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Abstract

As in a magic show, the mathematical superstar 7, defined as the ratio of circumference
to diameter of a circle, aside from appearing in usual places, often shows up in unexpected
places; likewise, occasionally, it is a no-show when its presence is intuitively anticipated.
We give some examples of such magical appearances and disappearances. We hope curious
readers will enjoy the show and inquisitive minds will seek to understand the explanations.
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Prelude

In a well-executed magic show, the spectators are pleasantly surprised when, with a sleight of
the magician’s hand or a waving of the wand an item vanishes right in front of their eyes. They
are equally astonished and awe-struck when an item suddenly appears from thin air.

I am no magician. Unlike my wife, who thinks magicians have superhuman powers, I surmise
they have well-developed skills to divert the spectators’ attention while their prior preparations,
sneaky interventions, or invisible accomplishes carry out the task in secret. Therefore, when my
wife prods me to explain how the magician did the trick, I let her win the argument whenever I
have no answer. Often, I do not want to know the answer for fear that such knowledge will rob
me of the pleasure of watching the magic show.

I am a simple mathematician — sometimes doing mathematics, but more often reading or
watching other people’s mathematics. I have noticed in many mathematical expressions the
presence of w. Typically there is a direct or understandable explanation of its appearance.
Sometimes the reasoning is long and more intricate. Once in a while, I have been taken aback
by its sudden appearance when there was no prior hint. On the flip side, there are some instances
when I was fully anticipating the presence of m; but it vanished into oblivion. Toward these
situations, I wish to draw the reader’s attention.
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I will explain some of the unexpected appearances or disappearances of m to reinforce these
two truisms: (1) Although highly talented and worthy of respect, no mathematician has su-
perhuman capabilities. (2) Although a superstar, = cannot appear or disappear at whim; it is
bound by mathematical rules. However, often I will skip the details and give references instead.

Relax and enjoy the show. Section 1 presents the usual definition of 7, its natural extensions,
and its properties. Section 2 gives the anticipated presence of 7 in many situations involving a
circle or an n-sphere. Section 3 lists some unexpected appearances of m — unrelated to a circle.
Section 4 gives some strange disappearances of m when we anticipate its presence. Put your
thinking cap on if and when so desired.

1 The Meanings of 7 and Its Powers

We begin with the most familiar definition of 7, which has been in existence for over four
millennia, and document its role in measuring items in two and higher dimensions.

1.1 The constant ratio in any circle permeates civilization

See Figure 1. For a circle of any size, the ratio of the circumference to the diameter is a constant,
sometimes referred to as Archimedes’s constant, denoted by

circumference
T (1)
diameter

3 ~

Circumference / Diameter = constant Disfhatar

Circumference = Distance travelled when wheel revolves once

Figure 1: In any circle, the ratio of circumference to diameter is a constant.

At the dawn of the documented history of mathematics, about 2000 BCE, the existence
and significance of this constant was known to (at least) Babylonians and Egyptians. See [3].
At different times and places, depending on differing needs of precision, Archimedes’s constant
has been variously approximated by 3,22/7,142/45,333/106, 355/113, /10, 3.14, 3.1416, . . ., etc.
Below I give a mnemonic (each word length is the digit, with comma ignored and end-of-sentence
punctuation read as 0) to help you remember the first 32 decimal places of

m = 3.14159 26535 89793 23846 26433 8327950 - - -

“Yes, I find a sport broadcast so lively since our smart, prolific, energetic artiste
practices the in-art joyfully when others do sourly over the air, assuming you do
explore shortwave radio.”

Readers will find some laudable piems (7-inspired poems) quoted in [2], including one by
Wislawa Szymborska (1923-2012), the 1996 Nobel Laureate for Literature. Memorizing the
digits of 7 is a popular challenge practiced on university campuses in the USA, especially around
Pi Day (March 14), which, in 2009, the United States Congress declared as a national holiday.
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The world record for m memorization, as certified by Guinness World Records, is held by Rajveer
Meena, who recited 70,000 digits in 9 hours, 27 minutes on March 21, 2015. The unofficial world
record (100,000 places) is held by Akira Haraguchi, who recited the digits from 2006 October 3,
9:00 a.m. to 2006 October 4, 1:28 a.m. (16 and 1/2 hours).

To track the evolution of knowledge, computation, and usage of 7, see [1] and [36]. The
quest for calculating 7 to many more digits is escalating. On Pi Day of 2019, tech giant Google
announced that using their cloud platform 7 has been calculated to 31.4 trillion decimal places
(or 10'3 1 places), only to be surpassed by Team DAVIS at the University of Applied Sciences
of the Grisons, Switzerland, who doubled the number of digits on August 14, 2021. Within
less than a year, on March 21, 2022, Emma Haruka Iwao extended the number of digits to 10
places using a supercomputer at the University of Tokyo for 158 days. A year later, on 8 April
2023, the computations were verified in 59 days by Jordan Ranous.

The earliest known use of the Greek letter 7 to represent the constant was in 1706 by the
self-taught Welsh mathematics teacher William Jones (1675-1749) in his second book [19]. It
is the first letter of the Greek word “mepigepera” (peripheria), or the perimeter of a circle.
Accordingly, today we write the circumference C' as a function of the diameter d or the radius
r of a circle as C' = wd = 2w r. A curious two-part puzzle was floated in 1702:

“A rope is wrapped around a desktop globe along its equator. How much longer does
the rope have to be so that it will be one foot off the equator all the way around?
What if the rope was initially wrapped around the earth’s equator?”

In both cases, the answer is 27 feet, which is only about the height of a tall man and is
independent of the size of the spherical object! The simple justification rests on the circumference
formula: Cy =27 (r + 1) =27 r + 27 = Cy + 2.

Speaking of constant ratio in a circle, here is more: The circumference of a circle can be
approximated by the perimeter of an inscribed regular n-gon (having n equal sides and n equal
angles) and then by letting n increase ad infinitum. In a regular n-gon, of any size, the ratio of
the perimeter to the length of the longest diagonal is a constant \,,. Pawan Kumar [26] evaluates
An for n=3,4,5,...,5000, and exhibits graphically that \,’s converge to .

1.2 The same constant appears in the area of a circle

Since ancient time, humans have known that the area of a circle is proportional to that of a
square on its radius. Say, you wish to reduce your food intake. If you order an 8 inch pizza
instead of your usual 10 inch pizza, you will eat 36% less than you usually eat.

Around (250 BCE) Archimedes (287-212/211 BCE) was the first to prove that the constant
of proportionality is the same 7 defined in (1). See [5]. Here is how: If we join to the center the
vertices of the regular n-gon inscribed in (or circumscribed about) a circle of radius r, then the
n-gon is dissected into n triangles, whose total area approximates from below (or from above)
the area of the circle. Passing to limit as n — oo, the perimeter p,, of a regular n-gon converges
to the circumference C' = 27r of the circle. Hence, the area of the circle (as an aggregate of the
areas, half base times height, of n triangles) becomes

1 1
AZ-(limpn>T:—CT:7T7”2. (2)
2 \n—oco 2
Equivalently, the ratio of the area of a circle to that of a square on its diameter is 7 : 4. No new
constant of proportionality is needed. Reversing the logic, the 7 in (2) is the same as that in

(1). All is well. But not all is over, as we shall see next.
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1.3 A new problem fuels many discoveries

The reappearance of m to also denote the constant of proportionality between the areas of a
circle and the square on its radius generated a new problem known as the quadrature of the
circle (or squaring the circle) problem:

“There surely exists a square whose area equals 7 r2, which is the area of a circle of
radius r. Construct that square with a straightedge and compass.”

The problem is equivalent to drawing a line segment of length /7, given a unit length.
As innocuous as it looks, a quest to solve this problem has resulted in much advancement in
mathematics. More than two millennia after Archimedes, in 1882, Ferdinand von Lindemann
solved the problem in the negative by showing that 7 is a transcendental number (not algebraic;
that is, not the root of a finite-degree polynomial with integer coefficients); as such, it cannot be
constructed with a straightedge and compass. About the transcendence of 7, more in Subsection
2.2. Stay tuned.

Lambert (1761) proved that 7 is an irrational number (not a ratio of two integers) by using
continued fraction (CF) representation of tanx. For a modern treatment of Lambert’s CF for
tan x, see the free online book [10], Sections 20 and 21 of Chapter 34. For a simple proof of the
irrationality of =, see [22]. However, to this day, it is not known whether or not 7 is a normal
number (in which all possible n-tuples of digits occur equally often for all finite n). See [32] for
some evidence and [2] for a more recent update.

1.4 Constant ratios in higher dimensions

Having studied various measurements in a circle, both perimeter and area, naturally, we wish
to extend the measurements to the three-dimensional (3-D) sphere. How did 7 show up in the
surface areca of a sphere of radius R given below?

S = 41 R?. (3)

You might say, “Why not? After all, a sphere is obtained by revolving a (semi-)circle about
the diameter.” T am delighted you were anticipating 7 in formula (3). And congratulations!
Your hunch is correct. But, momentarily playing the Devil’s advocate (Just for the record, I
am acting in this capacity pro bono.), let me counter, “If so, why don’t we see a 72, or a 7/2,
or some other power of 77 Why is the power exactly one?”

The appearance of 7 in (3) can be explained using Euclidean plane geometry! Long before
calculus was invented, Archimedes (287-212/211 BCE) used similar triangles and a limiting
argument (by slicing a sphere thinly with planes parallel to the equator) to show that the
portion of the surface area of a sphere of radius R sandwiched between two successive parallel
planes equals the corresponding portion of the lateral surface area of a circumscribing cylinder
(of radius R and height 2R) sandwiched between those two parallel planes. See Figure 2, where
x: R = A:1; or equivalently, ! = RA. Thereafter, by aggregation, the surface area of the
sphere equals the lateral surface area of the circumscribing cylinder. While the former cannot be
unfolded into a plane (such effort causes the Cartographer’s dilemma, see [23]), the latter surface
can be unfolded without distortion into a rectangle with side lengths 27 R and 2R; hence, the
area is 47 R?. See [29] for more details.

The Greek historian Plutarch (early 2nd century CE) relates that Archimedes requested the
figure of a sphere with circumscribing cylinder be engraved on his tombstone, which is confirmed
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Figure 2: Archimedes explains the surface area of a sphere equals the curved surface area of the
circumscribing cylinder using thin slices parallel to the equator.

by the Roman writer Cicero, who located the tomb in 75 BCE when he was quaestor of Sicily.
I have begun to think ... “What do I want on my tombstone?” By the time you finish reading
this paper, you may learn my wish.

Next, let us find a formula for the volume of a sphere of radius R. Take any small region
of area A on the sphere and join all points on (the boundary of) the region to the center. The
cone so formed is approximately a pyramid on a plane base of area A and height R; hence, its
volume is one-third base times height or (1/3)AR. By aggregating such volumes as the base
slides to span the entire surface of the sphere, one can obtain the volume of a sphere of radius
R to be

1 1 4
= — = -4 2 = — 3_ 4
1% 3SR 3 TR*R 37TR (4)

Again, there is no surprise in the presence of 7 (and not a different power of 7) in (4).

However, why stop at dimension 37 We, who live in the post-calculus era, can find the
surface area of an n-dimensional (n-D) unit hyper-sphere (see details in [34]) as

Sn — — — (n—=1)!

fooo e~r*rn=1dr %F(n/Z) ['(n/2) —(372"_/?)!

()

(f_oooo e_mzdx) V" 2mm/2 {2nﬂ(n_1)/2((”_1)/2)! for odd n,

for even n

and the volume of an n-D unit hyper-sphere as V,, = fol Snr"tdr = S, /n. The surface arca and
the volume can be obtained recursively as

27
V..
n+2 "

2
Sny2 = —Wsn and V4o =
n

In particular, the surface and the volume of a 4-D and a 5-D hyper-spheres involve 72, those of
6-D and 7-D hyper-spheres involve 73, etc. So, it was not for nothing that I played the Devil’s
Advocate a while ago. I rest my case.

Interested readers can check from (5) that the surface area of a unit n-sphere increases as n
ranges from 1 to 7, reaching a maximum for n = 7, and thereafter the surface area decreases to
0 as n — oo. Likewise, the volume of a unit n-sphere, V,, = S,,/n, increases as n ranges from 1
to 5, reaching a maximum for n = 5, and thereafter, the volume decreases to zero as n — oo.
See [34]. We will revisit n-spheres towards the end of this paper.
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2 Anticipated Presence of 7

Several alternative expressions of m were proposed to compute 7 efficiently. As mathematics ad-
vanced, new sub- disciplines arose, and new techniques emerged during the last half millennium.
Since the target is 7™ or m ', its presence is well anticipated.

2.1 Computing 7 via sequences, series, and infinite products

Ready for a quiz? Guess the limit of the following sequence involving n nested radicals

:2"\/2—\/2+\/2+...+\/§. (6)

as n — o0o0. Please note the single minus sign in (6). The limit of (6) will become obvious
once we disclose how Courant (1888-1972) and Robbins (1915-2001) constructed it. See [11],
p. 124. Inscribe a regular 2-gon (just a diameter); then bisect the angles between successive
vertices of a regular 2-gon to form a regular 2% = 4-gon (an inscribed square). Then bisect the
angles between successive vertices of the regular 2?-gon to form a regular 23-gon (an inscribed
octagon). Then bisect again to form a regular 2*-gon (an inscribed hexadecagon). Etc.

Figure 3: Length of a side of a 2""!-gon as a function of that of a 2"-gon

Suppose that s,, denotes the length of a side of a regular 2”-gon. Then s; = 2, 55 = v/2, and
thereafter, a recursive relation (see Figure 3) holds:

St = (50/2)2 + [1 = /1= (5282 = /2= 2(/T— (5, /2 = /2 — \/I— 52,

Solving the recursive relation, we get

ViR oy

and, in general, by mathematical induction on n > 1, we have

3n+1—\/2—\/2—0—\/2+...+\/§.

involves n radicals
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Note that the perimeter of a regular 2"*!-gon inscribed in a unit circle is 2"*'s, ;, which
monotonically increases to 27 as n — oo, implying that lim, _,o 2"s,11 = lim,, .o, h, = 7. Had
you read the title of this subsection with care, you would have known the answer.

Let us look at some series that converge to m or its transformation. By evaluating the
Gregory-Leibniz series (1674)

v 1 I N
tan ' x = ——du=20r——+———+... 7
an~ ' x /0(1+u2)u Tt (7)
at x = 1, one gets
T 1+1 1 1 1 1
4 3 5 7 9 11 13

See [11], p. 441-442. As elegant as this formula is, the convergence is extremely slow: Five billion
terms are required for the Gregory-Leibniz series to compute 7 correct to 10 decimal places. A
faster convergence was already obtained by Kelallur Nilakantha Somayaji (1444-1544)

4 4 . 4 4
2x3x4 4x5x6 6x7Tx8 8x9x10

m=3+ o (8)

which holds because

1 1 L+ 1 1 L
2x3x4 4xHx6 6x7Tx8 8x9x10

B 1 1+ 1 1 1+ 1 N 1 1+ 1
S \2x2 3 2x4 2x4 5 2x6 2x6 T 2x8

1+1 1+1 1+ - T-3
3 5 7 9 11 4

1
4
Nonetheless, in 1705, Abraham Sharp (1651-1742) substituted z = 1/1/3 in (7) to obtain

T 11 N 1 1 N 1
6 /3 3-3 32.5 3.7 3.9 )7

In 1706, starting from 8 = tan~'(1/5) and using the tangent of double angle formula twice,
John Machin (1680-1752) obtained tan(45) = 120/119 = (141/239)/(1—1/239) = tan(A+ B);
or equivalently, 4tan~'(1/5) =48 = A+ B = 7/4 + tan~'(1/239), or

Tl 1, 1 Lo,
4 °\5 3.5 5.5 7 239 32393 ' 5.2395 )7

In 1844, Johann Martin Zacharias Dase (1824-1861) calculated 7 to 200 decimal places in two
months, a record for the time, from the Machin-like formula

T — tan™! ! + tan~* ! +tan~! =

4 2 5 8
A faster formula 7/4 = 6tan~!(1/8) + 2tan~'(1/57) + tan—!(1/239) was found by Stormer in
1896, and was used in 1961 by Shanks and Wrench (at the IBM Data Processing Center, New
York) to compute 7 to a little over 100,000 decimal places.

In 1593, the French mathematician Frangois Viete (1540-1603) began with the area Ay = 2
of a square (a regular 2%-gon) inscribed in a unit circle, with each side subtending at the center
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an angle (3, = 27/2?; then he successively doubled the number of sides of the inscribed polygon
(hence halved the central angle to become §; = 27/2"); he noted that Az = Ay/cos B3, Ay =
As/cos By = Ay/[cos B3 - cos By, ..., Ap = Ag/[cos B3 - cos(By) - ...cos(Bk)]. Thereafter, using
cos(0/2) = \/1/2 + (1/2) cosf, and taking limit as k¥ — oo, he obtained

2_\/T 1+1\/T ROV E S YR
T V2 2 2V2 2 2V2 2V2 7
(9)
2 2 2

2
W_I.E.\/2+\/§.\/2+ 2+\/§....

Both (9) and (6) use the same construction; but (9) computes the area and (6) computes the
perimeter of the 2"-gon. With some algebraic manipulations, interested readers can verify that
these two expressions are identical! That is, for all n > 1, the n-th approximants of 7 obtained
from these two expressions are the same.

The English clergyman and mathematician John Wallis (1616-1703) in 1655 found

T (2 2) (4 4) (6 6) (8 8)
2 \1 3/ \3 5/ \5 7/ \7 9
We cannot report here how Wallis derived it, before there was integral calculus. See [33]. But

we should point out that his formula requires only rational operations (no need to extract roots)
to compute 7. Today one can use integration by parts to show that

” 3.5 om-1) [ 2.4.6...(2m)
. om dr — R . s 2m+1 dr = - .
/0 SO = e am) 2 /0 TS @m )

Since the ratio of the two integrals tends to one as m — oo, we get Wallis’s formula. Let us
count our blessing for living in the post-calculus era.

Sir Isaac Newton (1642-1727), who shares credit with Gottfried Wilhelm Leibniz (1646-1716)
for developing infinitesimal calculus, used the binomial theorem to obtain

(1 a2 —1/2 -2 04 R
1 —(1—2?) —1+1x+13 1-3-5

Vi 2" ot Taaet o

which upon integration becomes

.1 1a® 1-32°5 1-3-527
sim " r =+ 5+ 5——

X
53 "2.45 T2 7 T

and on evaluation at z = 1/2, yields

T 1 n 1 n 1-3 n 1-3-5 n
6 2 2.3.28 2.4.5.25  2.4..6-7-27 7
During the Plague years 1665-6, “--- having no other business at the time”, Newton con-

sidered a semi-circle with diameter (0,1) and radius 1/2. See Figure 4. The area a of the
half-circular segment on (0,1/4) equals one-sixth of the circle minus one-half of an equilateral

triangle of side length 1/2, or /24 — /3/32. But it also equals the integral f01/4 Vi —z?dr =
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fO)=+yx(1—x)

area=a| /6.

0 1/4 1/2 1

Figure 4: Newton integrates a half-segment of a circle.

fol/ 4(\/5 +v/1 —x)dz. The binomial theorem expansion of /1 — x into an infinite series, times
vz, when integrated term by term yields

3\/_ 1 1 1
+2-24 ).
4 (5-25+28-27+72-29+ )

The story of 7 will remain incomplete if we do not mention “The Man Who Knew Infinity”,
Srinivasa Ramanujan (1887-1920), who published dozens of innovative, elegant, deep, and fast-
converging formulas for 7. Here are three such formulas (see [38]), of which the first one was
already proved by Gustav Conrad Bauer in 1859; but who could have the faintest idea about
the latter two? Please do not ask me how the magician did it.

2 1\* 1x3\° 1x3x5)\°
S—1-5(=) +9 —13( ===
T (2) N (2><4) <2><4><6>
2v/2 1! 1 ! 1 !
22 g (L) par (AXBY g (15X
VT2 (3) 4 4x8 4 x8x12

2\/5 - 1(1103 + 26390k)
(k!)43964%

N | =
|
&
=
M

k=0

In response to Hardy’s curiosity “How does it come into your mind?” Ramanujan was lost for
an answer: “I don’t know; it just happens; it’s like a revelation; it just comes floating in. It
must be God; it has to be the mind of God engaging with me.”

Inspired by the last formula, which yields eight digits per term, American brothers David
Volfovich Chudnovsky (1947-) and Gregory Volfovich Chudnovsky (1952-) developed in 1987
the Chudnovsky algorithm (see [9]) used nowadays to calculate the digits of 7 with extreme
precision. Modern calculations of 7 use the Chudnovsky algorithm. About 14 additional terms
are found by evaluating each term in the expression below:

112 i (6k)!(13591409 + 545140134k)
T 64032032 £~ (3k)! k13(—640320)3k

2.2 Alternative definitions of 7«

As a precursor to defining 7 using complex numbers, we must recall the base of natural logarithm
e = lim, ,oo(1 + 1/n)" ~ 2.7318281828459 - - -. It was discovered in 1683 by Jacob Bernoulli
(1655-1705) while he was studying compound interest. It is called Euler’s number in honor of
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Leonhard Euler (1707-1783) who placed his indelible signature on it by doing three things: (1)
In 1731 he first introduced the symbol e and proposed its ideal fit as the base of Napier logarithm
(hence, it is also called Napier’s constant). (2) He proved that e = ).~ (1/k!) by evaluating
at © = 1 Taylor’s series expansion of the inverse-logarithm (or exponential) function e® whose
derivative is itself. (3) In 1737, he proved that e is irrational using its CF representation.

i = em/z

_1 =|pizrtnm t 1 = gizkm

Figure 5: Complex numbers of the form e

Define 7 via complex roots of 1: All complex-number solutions to e* = 1 are in (imagi-
nary) arithmetic progression of the form {i2tk : k =0,4+1,£2,...}. See Figure 5.

The unique positive real number ¢ such that e = 1 is defined to be 7. (10)

Euler’s formula, €’® = cos ¢+ i sin ¢, implies that €™ = 1 and ™ +1 = 0. The latter, known
as Fuler’s identity, has been called “the most remarkable formula in mathematics” by Richard
P. Feynman, for its single uses of the notions of addition, multiplication, exponentiation, and
equality, and the single uses of the important constants 0,1, e,7, 7.

In 1873, Charles Hermite (1821-1901) proved that e is a transcendental number using con-
tinued fraction (CF) representation. Lindemann (1882) proved that if a complex number z is
algebraic then e* 4+ 1 cannot be 0. But Euler’s identity says that ¢ + 1 = 0. Hence, i7 is

transcendental, and so is 7. Lindemann’s proof was later simplified by other mathematicians.
See [17] or [21].

In a 1988 (unscientific) survey, Mathematical Intelligencer asked its readers to rank 24 the-
orems on a scale of 0-10, for beauty. Euler’s identity was ranked the first, the transcendence of
7 the eighth, and Nilakantha’s series (8) for m the fourteenth. See [35].

flx) =441 —x2

Curvele

Area

Figure 6: Arc length and arca of a semi-circle

In the nineteenth century, attempts were made to define 7 free of the circle. See Figure 6. In
1841, starting from the functional form of the upper semi-circle, f(z) = v1 — 22, = € [-1,1],
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Karl Weierstrass applied the arc-length formula for a curve to obtain 7 as

RV R VL)l T Y - —, (1)
1 V1 =22 o V1—2a2

Alternatively, using the area under the upper semi-circle, m could be defined as

1 1
7r:2/ \/l—mzdxzél/ V1—22dz. (12)
-1 0

However, since in university curriculum differential calculus precedes integral calculus, in
1870, Richard Baltzer defined 7 as twice the smallest positive root of

o
l— =+ ———+...=0, (13)

Attentive readers will note that the left-hand side of (13) is Taylor’s series expansion of cost,
which admits as the smallest positive root /2.

Formulas (10)—(13) are post-calculus alternative definitions of 7 without direct reference to
the circle or the n-spheres.

The expressions presented in this section were obtained keeping 7 or 7! in focus. In the
next section, we present expressions that arose in unrelated contexts. In each example, ask
yourself: “Where did 7 come from?” Then try to answer the question if you can.

3 Unexpected Appearances of w

In the seventeenth century, with the discovery of many other curves, refinement of algebra and
trigonometry, and discovery of calculus, 7 was freed from the circle (sphere and hyper-spheres).
Today 7 appears in many branches of mathematics, such as number theory, probability, analysis,
etc., and also in physics and engineering.

3.1 Archimedean Algorithm

The paper [6], commemorating the 2015 centennial of the Mathematical Association of America,
mentions that Pfaff-Borchardt—Schwab discovered severally during the nineteenth century a
mean iteration technique to compute m: Set ay = 2v/3 = 3.464102--- and by = 3. Then let

Uni1 = 2a,b,/(a, + by,) be the harmonic mean, and b,,1 = \/a,11b, be the geometric mean.
Below we show (to six decimal places) the first few iterations:

[a] 3.215390 3.159660 3.146086 3.142715 3.141873 3.141663 3.141610 3.141597 3.141594 3.141593
[b] 3.105829 3.132629 3.139350 3.141032 3.141452 3.141558 3.141584 3.141590 3.141592 3.141593

The inter-twined sequences a,, and b, converge to m, with the error decreasing by a factor of
four with each iteration. See [5]. How does 7 appear in the limit?

No trigonometric function has been used in this algorithm; hence it can stand alone without
reference to the circle. However, the proof of the convergence to 7 is related to the approximation
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of the half-perimeter of a unit circle inspired by Archimedes’s evaluation of the perimeters of
regular n-gons for n = 6,12,24,48,96, .... Note that ay (and by) are the half-perimeters of the
circumscribed (and inscribed) regular hexagons about (and in) a unit circle. Now that the secret
is revealed, it should not come as a big surprise that [24] derives Viete’s formula starting from
the Archimedean algorithm since both procedures involve successive doubling of the number of
sides of an inscribed m-gon.

3.2 Basel Problem

In 1735 Euler solved the Basel problem (posed in 1650 by Pietro Mengoli) of finding the sum of
the reciprocal squares (see [11], p. 509-510, 482):

1 1 1 1 w2
44—y = 14
12+22+32+42+ 6 (14)

The left-hand side of (14) is the sum of inverse squares of natural numbers, with no apparent
connection to the circle, and often denoted by ((2) because it is the Riemann Zeta function
C(s) = Y02 n~* evaluated at 2. Yet on the right-hand side 7* flashes in like a bolt from the
blue. For a proof of (14), see [30], or [28] p. 284, or [13]. The result is both surprising and
beautiful (it ranked fifth in [35]). Therefore, I must beg your permission to present a synopsis
of my favorite proof found in [25]. But please do not insist on it right now. Instead, wait until
Subsection 3.3.

Incidentally, this result proves that a randomly chosen natural number is square-free (not
divisible by a perfect square other than 1) or two randomly chosen natural numbers are relatively
prime (have no common factor other than 1) with probability ¢ = 6/72. Here is the reason: For
every prime p, the selected natural number must not be divisible by p?, and at least one of the
two sel2ected natural numbers must not be divisible by p. Each event happens with probability
1 —p~=. Hence,

B (1—2?2):(1_[ 1_1p2>_1:<H [1+p2+p4+p6+...}>‘1

p prime p prime p prime

-1
=1 6

:<ZE> = 5 = 607927 -
k=1

where, in the last line, we have used the Fundamental Theorem of Arithmetic (also known as
the Unique Prime Factorization Theorem) to factor every natural number.

3.3 Probability distributions

For what choice of the constant k is the function g(z) = k e=*"/2 defined on (—oco,c0) a gen-
uine probability density function (PDF); that is, the integral equals one? With the choice of

k = 1/v/2x, the test function g(z) becomes the PDF of the standard normal distribution (see
Figure 7), also known as the Gaussian distribution in honor of Johann Carl Friedrich Gauss
(1777-1855). How did 7 find a place in this distribution?

To explain, we must prove that the integral [ = [~ e */2dx evaluates to v/27. This integral
already appeared (in slight disguise) in formula (5) for the surface area of a hyper-sphere. To

12
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Figure 7: Standard normal and standard Cauchy distributions

prove it, we can compute its square using polar transformation: x = rcosf,y = rsinf, with
Jacobian r. Then we obtain

00 [e) 27 0o 0o
I’ = / / e~ @ H)/2 gy dy = / / e 2 rdr df = 27r/ e “du = 2.
—o00 J —oc0 0 0 0

The calculation above also shows that if X,Y are independent standard normal variables, then
W = (X?+Y?)/2 = r?/2 has the standard exponential distribution with PDF e~ on (0, c0);
and independently of W, the transformation © = tan™'(Y/X) is a random angle having a
uniform (0, 27) distribution.

Do you now see the relation to the circle? When X and Y are independent, normally
distributed variables, the joint PDF of (X,Y') is the product of the marginal PDF’s. Hence,
it has contour plots (set of points with the same PDF value) that are concentric circles. No
wonder 7 claims its rightful place in the standard normal PDF.

Let us look at another example. For what choice of the constant ¢ is the function h(x) =
¢ (14 2?)~! defined on (—o0, 00) a genuine PDF? This time, choose ¢ = 1/7 to obtain the PDF
of the standard Cauchy distribution (see Figure 7), named after Augustin-Louis Cauchy (1789
1857). To explain how 7 entered this scene, note that the derivative of tan™' z is (1 + z%)~1.

Hence,
/_Oo(l + 23 dx = tan_lxﬁooo = g — (—g) — 7.

How is the standard Cauchy distribution connected to the circle?

Let me tell you a story: Imagine two parallel, infinitely long walls two units apart. A rotating
jugs machine (or a pitching/bowling machine) placed midway between the walls throws (a large
number of ) balls in random directions distributed uniformly over (0, 27). See Figure 8. Assuming
that the balls travel straight after ejection, the histograms of points where the balls hit either
wall for the first time resemble the standard Cauchy distribution, exhibiting the connection to
the circle. Stripping the story, we may say: If © has a uniform (0,27) distribution, then tan ©
has a standard Cauchy distribution.

A direct (and hopefully no longer intriguing) connection between the above two examples is
that the standard Cauchy variable X is the ratio of two independent standard normal variables.

Consequently, the PDF’s of X and X! are the same, implying that fol(l + 2%) " Yde = 7 /4.

In that same spirit, let us ask: What is the PDF of the ratio Y of two independent, folded
standard Cauchy variables, or of Y = |X;|/|X3|, where the X;’s are independent standard
Cauchy variables?

Using routine change of variables y = 1 /25 and w = x5, with Jacobian w, and integrating

13
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Standard Cauchy distribution

orth Wall (NW)

hits NW out of view 5 . - g hits NW out of view
Middle Line

Jugs Machine
South half of picture is similar (hence, not shown)
[ I I I |

-4 -2 0 2 4

Figure 8: A jugs machine throws balls in a uniformly distributed angular direction. Balls travel
straight and hit one of the walls. The points of impact (on cach wall) follow a standard Cauchy
distribution. About 12.6% of balls that hit the north wall, hit it outside [—5, 5].

out w, we obtain the PDF of Y as W;él_nyyz) on (0,00). By definition, the PDF’s of Y and Y !
are the same, implying that

' —Iny 72
Ao W=
o (1—9?) 8

Thereafter, expanding (1—4%)~! = 1+y?>+y*+. .., changing variable u = — In y, and integrating
term by term, the last integral equals [ u (e ™ + e + e 4 ...) du, or the sum of inverse
squares of odd numbers. Adding to it the sum of inverse squares of even numbers, we obtain

=1
> g

k=1 J

[e.9] o0

1 1 T 1 1 IR
E = — —g —, which impli — = —.
2j -1 + 1 2))? 3 + 1 - 720 Which implies 2 2 5

o o
=1 j=

This is the synopsis of the proof in [25] of Euler’s solution to the Basel problem.

3.4 Large factorials

Large factorials must be evaluated when counting arrangements of gas particles, quantum par-
ticles in different macro states, or files in data compression. Quite unexpectedly, = appears in
Stirling’s (1730) approximation n! ~ v/27n(n/e)™, where ‘~" means the ratio of the two sides
converges to 1, as n — 0o. The convergence is very fast: While 10! = 3628 800, the approximate
value is 3598 696, which is only a 0.83% underestimate. Similarly, 100! is underestimated by a
mere 0.083%.

This asymptotic formula is named after James Stirling (1692-1770), though it was stated

earlier by Abraham de Moivre (1667-1754), except for the constant v/27. Here is a heuristic idea
of a proof that uses Laplace’s method (1774) for approximation, see details in [37], discovered
by Pierre-Simon, Marquis de Laplace (1749-1827):

n!l = F(n -+ 1) = / e T dr = / enlnz—x dr
0 0

0 2
— _(y—n) n\"
~ enlnnon e dy = (—) 2mn.
o e
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We may rewrite (15) to obtain 7 as the limit of a sequence involving factorials and exponentials

" 62nn!2
1m ——— =
n—oo 2n2n+1

3.5 Asymptotic formula for the number of partitions

The partition function p(n) is the number of ways a positive integer can be written as a sum
of strictly positive integers. For example, p(4) = 5 because 4 can be written in five ways:
I1+1+141;14+142;14 3;2+ 2;4. Similarly, p(9) = 30, p(14) = 135, p(19) = 490, p(204) =
5590088 317495. Interested readers may use the free WolframAlpha Calculator to find p(n) by
submitting the code: partition(204).

Littlewood [20], in his review of Ramanujan’s collected works, calls the following a result of
“supreme beauty”:

B(1 —2?)(1 — 2" (1 —2b)--- ]
(1 —2)(1 = 2*)(1 —a?)---]°

= p(4) +p(9)z + p(14)a” + p(19)2” + - -- (16)

“But where is 7 in (16)?” you might ask. Thank you for staying alert. You will presently see 7
in the approximation of p(n), for large n.

The partition function p(n) is the coefficient of z" in [[;,(1 — 2")~'. In 1918, Godfrey
Harlod Hardy (1877-1947) and Srinivas Ramanujan (1887-1920) proved what we call today the
Hardy-Ramanujan Asymptotic Partition Formula: As n — oo,

n) ~ ! emVn/3
pn) ~ eV (17)

The right hand side of (17) evaluated at n = 204 gives 5767 332 435 055, which is a 3% overes-
timate. But when evaluated at n = 2004, it is only a 1% overestimate. The percentage error
drops as n increases. Even though p(n) is a pure number theory concept with no connection
to the circle, how does 7 appear in this asymptotic formula? I must step aside and let the
originators explain. See [16]. Also, see [12] (and some references therein) for applications of this
most beautiful formula in number theory. Rewriting (17), we obtain 7 as the limit of a sequence
involving the partition function and logarithm

T A Ol
n—00 2n/3

3.6 Stochastic processes

In this subsection, we look at three stochastic processes. In the first one, m appears naturally.
There is no surprise here; it serves as a warm-up exercise. In the second stochastic process, the
appearance of 7, though not immediately anticipated, can be explained with hindsight. The
third stochastic process is too deep to anticipate the arrival of 7 in its answer or to explain its
presence even when we know it has arrived.

Choose a pair of points (X, Y) at random in the square [—1,1] x [—1,1]; call it a success if
X2 +Y? <1, and a failure otherwise. Then four times the proportion of success converges to
7, as the number of chosen points increases to infinity. This exercise can teach students how
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many iterations are needed to reduce the error to a desired tolerance. Indeed, the convergence
is extremely slow.

The second stochastic process is known as Buffon’s Needle Problem, solved by Georges-Louis
Leclerc, Comte de Buffon (1707-1788). On a hardwood floor, where the floor lines are parallel
at gaps of d, drop a needle (or a toothpick to protect the floor) of length d after giving it a good
spin. See Figure 9. Then the probability that the needle cuts a line is 2/7. Where from comes
7 in the answer?

Figure 9: A randomly dropped spinning needle cuts a line with probability 2 /7.

A needle cuts a line if and only if X, the distance of the midpoint of the needle from
the nearest line is at most (d/2) sin©®, where © is the positive angle the needle makes with
the positive direction of the floor lines. Since X is uniformly distributed over (0,d/2), and
independently of X, © is uniformly distributed over (0, 7), we have (0,Y = 2X/d) is uniformly
distributed on the rectangle (0,7) x (0,1). Therefore,

P{X < (d/2) sinO} = P{Y <sin©} = / lP{Y <sinf}df = 1 / sinf df = 2
0o T Jo ™
Consequently, 2 over the proportion of times the needle cuts a line converges to 7, as the num-
ber of drops increases to infinity. The connection to the circle is established by noting that the
needle spins about its midpoint and stops in a random orientation that determines whether or
not it intersects a floor line.

In the third stochastic process, m appears rather mysteriously: Flip n (a large number)
fair coins; compute the absolute difference d between the numbers of heads and tails; repeat
the process many times (using the same n coins) and compute the average d of the absolute
differences. Then the ratio 2n/d? approaches 7, as n increases. Where did this limiting value 7
come from? T am flabbergasted.

The mystery is solved using the central limit theorem (CLT), first published in 1733 by
Abraham de Moivre and popularized by Pierre-Simon Laplace in 1812. It is (arguably) the Fun-
damental Theorem of Statistics because of three strong reasons: (1) It relates several concepts
such as the sample size, the sample mean, the population mean, and the population standard
deviation. (2) It holds for any population distribution with a finite variance. (3) It yields
many statistical tests. See [31] for a modern-day proof that uses a moment-generating function
approach (although one can adapt it to the characteristic function approach).

Since d is the absolute value of the sum of n independent random variables taking values
in {—1,1} with probability 1/2 each, by the CLT, d/+/n is distributed as an absolute standard
normal variable |Z]|, with expectation E[|Z|] = \/2/m. Therefore, by the law of large numbers,
d/+/n converges in probability to y/2/m. Equivalently, by Slutsky’s theorem (1925), named after
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Eugen Slutsky (1880-1948), 32/(271) (being a continuous function of d//n) converges to 7,
and 2n/ a (being another continuous function) converges to .

This third stochastic process is my advertisement for a graduate-level course in probability
theory for mathematical statistics. There, many more wonders await you.

3.7 Physics

Letting ¢ denote the earth’s gravitational acceleration, the approximate period T of a simple
pendulum of length L swinging with a small amplitude is given by

L
T m 2my | = 18
p (18)

Where from comes 7 in (18)7 Is it because the pendulum traces the arc of a circle (of length L)
as it swings back and forth? No. In fact, for a small amplitude, that arc is approximated by a
line. The source of 7 is different.

To derive (18), proceed from Newton’s Second Law of Motion: F' = ma. For a pendulum
with a small amplitude, the (linear) acceleration of the point mass is —gsinf ~ —g6, and its
angular acceleration is o & —gf/L. Treating 6, the angular displacement of the pendulum from
its central location as a function of time ¢, the angular acceleration is the second derivative of
the angular displacement, or 6”(¢). Thus, the oscillatory motion of the pendulum is a linear
simple harmonic motion that satisfies the second-order linear differential equation

0" (t) + %Q(t) —0, (19)

together with initial conditions: 6(0) = Oyay and '(0) = 0. Notice that the differential equation
cannot contain the mass of the pendulum bob (or it cancels out as a common factor). The

solution to (19) is () = Opax coOs ( g/L t), which is a periodic function with period given by
(18) and is free of O ax.

Since the period of the cosine function is 27, its appearance in (18) is no longer mysterious.
Even without knowing how to solve (19), the presence of 27 in (18) can be anticipated by
interpreting the bob’s actual location: It is the projection along a diameter of a base circle on
which an imaginary bob moves at a uniform speed, while the string attached to the imaginary
bob traces the slant face of a slender, right-circular cone. However, this explanation works for
small amplitude only. By the way, if the string’s length is chosen carefully so that T = 2 seconds,
one can experimentally determine the value of g.

3.8 Geometry, but not of a circle

We conclude this section with the most stunning (in my opinion) appearance of 7. In 1858 Rev.
Hamnet Holditch (1800-1867), President of Gonville and Caius College in Cambridge, published
the following geometrical theorem, which I first saw in [27].

Holditch’s Theorem. Assume a chord can slide around a smooth, closed, convex curve C4
with its two ends always on it. A fixed point, which splits the chord into two parts of lengths
P, q, traces another closed curve Cy within the first curve. Then the area between the two curves
Cy and Cs is mpq.
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Figure 10: While a chord slides inside a smooth, closed, convex curve, a fixed point on the
chord traces another curve. The area between the two curves is 7 times the product of the two
segments into which the point splits the chord.

Holditch did not explicitly mention it, but one must also assume that the traced curve Cy
is simple (it does not intersect itself). Such a curve is also called a Jordan curve, named after
Camille Jordan (1838-1922), who proved that every Jordan curve divides the plane into an
“interior” region bounded by the curve and an “exterior” region containing all other points,
so that every continuous path connecting a point in one region to a point in the other region
intersects with the curve somewhere.

In the absence of modern day computer software such as The Geometers’ Sketchpad, or
even simple PowerPoint, which I have used to draw Figure 10, how did the reverend verify his
discovery? He did not have to. He had a mathematical proof!

The fascinating aspect of Holditch’s theorem is that the area between the given curve and
the traced curve is independent of the shape and size of the given curve! Moreover, the area
equals that of an ellipse with half-axes p and ¢q. But there was no ellipse to begin with! The
reverend’s proof in [18], being short, understandable and freely accessible, is left to the reader.

As a special case, if the given curve C is a circle of radius R, where R > (p + ¢)/2, then

the traced curve Cj is another concentric circle of radius \/R? — pq, and the annular region has
area T pq.

4 Unexpected Disappearances of 7

We give several examples of the absence of m when we “naturally” anticipate its presence.
Admittedly, “naturally” is a subjective word. Perhaps I should ask: What does your intuition
tell you a priori about the presence or absence of 7 in a situation? How quickly will you revise
your intuition after seeing a mathematical justification to the contrary?

4.1 Extract from a circle

Consider a sector of a unit circle casting a central angle 7/3. (In fact, six such non-overlapping
sectors cover the entire circle.) The sector consists of a unit equilateral triangle (ET) and a
segment (seg) of the circle attached to one side of the ET. Attach such a segment to the other
two sides so the sector becomes a unit Reuleaux triangle (RT). See Figure 11. Its perimeter is

7; the area is (7 — 1/3)/2; and the width (or diameter) in every direction is 1. Thus, although
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not a circle, it is a 2-D object of constant width; its perimeter is the same as that of a circle of
diameter 1, and its area is slightly smaller than that of the same circle.

Figure 11: When two unit Reuleaux triangles are removed from a unit circle, the remaining area
is free of .

The unit RT can slide within the circle so that one of its “sides” always touches the circum-
ference and the opposite “vertex” reaches the center. The shape of the remaining part of the
circle does not change. Not very interesting. Also, you can fit three (but no more) such unit
RTs inside the unit circle. They can slide within the circle; but their relative positions remain
the same; and so do the uncovered three parts of the circle; each with three “sides” of length
7/3 (one side is convex and two sides are concave) and arca (3v/3 —)/6. There is nothing much
exciting here either.

But when you put two unit RT's inside the circle with one of their sides touching the circum-
ference, their relative positions can change: The central angle 6 between (the tangents to) the
sides of the RTs varies between 0 and 27/3. However, when these two RTs are removed, the
total area of the remaining two parts of the circle, connected only at the center, is a constant

V/3, free of 7, for all 6!

“Who ate my pi?” would cry Baby Bear of Goldilocks and the Three Bears. We comfort
Baby Bear by showing the following equalities in the area:

circle = 6 sectors = 6 seg + 6 ET = (6 seg + 2 ET) + 4 ET = 2 RT + 4 ET.

Moreover, 7 has not totally vanished: The total circumference of the remaining two parts is
8 /3 for all 6. Also, each part has an area free of 7 if and only if § = /3.

4.2 Extract from a cylinder

Next, consider the right circular cylinder {(z,y,2) : 0 < 22 +9*> < 1,0 < z < H} shown in
Figure 12. It has radius 1, height H, two plane circular faces of perimeter 27 and area m, a
curved surface of area 2m H and volume 7 H. So far, it is so good: Superstar 7 is in its rightful
place. Merrily the world goes round and round.

Play a little mischief: Dissect this cylinder with a plane passing through points (0, —1,0),
(0,1,0),(1,0, H). Then the smaller solid (which I wish will be inscribed on my tombstone) has
a curved surface area 2H and volume 2H/3, both are free of 7! “Who Ate My Pi?” would
complain Mama Bear.

To console Mama Bear, we explain: On the bottom semi-circular face of the smaller solid,
draw several radii at small angular gaps. Slice the solid with vertical cuts along these radii.
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Figure 12: Slice a cylinder into two pieces using a slant plane passing through a diameter on
one circular face and only one peripheral point on the opposite face.

As the slices fan out, remaining attached along the curved surface, the curved surface unfolds
without distortion into a plane showing the graph of H sinf on 6 € (0, 7), under which the area
is 2H; the center of the bottom face splits up to become the apex of every slice and remains
at a distance one from the base on the new planar face. Aggregating the volumes of these thin
pyramids, we find the volume of the smaller solid as (1/3) x 2H x 1. Nonetheless, 7 is still

present in the areas of the semi-circular face (7/2) and the semi-elliptical face (mv/1+ H?/2).

Also, the bigger solid has three plane surfaces with areas /2, 7v/1 + H?/2, 7, one curved surface
with area 2H(m — 1), and the volume is H(m — 2/3).

4.3 Intersect identical cylinders

Suppose we have two identical cylinders with radius r and height A~ = 2r. Then each has
volume 27 73 and total surface area 67 r*. Suppose the cylinders intersect orthogonally (their
axes intersect perpendicularly) at their centers. See Figure 13 (left panel). Then the 3-D region
of intersection (region common to both cylinders) has volume (16/3)r® and surface area 1612
“WHO ATE MY PI?” would growl Papa Bear.

Figure 13: Intersections, when two (left) or three (right) identical cylinders intersect (mutually)
orthogonally, have volumes and surface areas free of .

To calm Papa Bear down, use the Cavalieri Principle, named after Bonaventura Francesco
Cavalieri (1598-1647). Imagine a sphere of radius 7 inscribed inside the intersection. Then slice
the intersection with planes parallel to the plane containing the two axes leaving an infinitesi-
mally small distance between successive planes. Notice that the cross-sections are squares with
inscribed circles with their areas in the ratio 4 : 7. Accumulating these cross-sections, the vol-
ume of the intersection is 4/7 times the volume of the sphere; or, (4/7) (4/3)m 73 = (16/3) 73,
free of w. For surface area, use the above Cavalieri Principle and Archimedes’s explanation for
the surface arca of a sphere mentioned in Section 1.

The only presence of 7 left in the solid of intersection (without cutting it further) is in the
curved edges that form boundaries of two ellipses with half-axes v/2r and r, respectively. The
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total curve length is given by Colin Maclaurin’s (1698-1746) expansion (see [8]) of the integral
formula for the perimeter of an ellipse as

[e.e]

1-3.5---(2k—1)\> 1
INGET [1—Z< A6 ) 2k(2k—1)]'

k=1

For our purpose, it suffices to know that the total edge exhibits 7.

What if three such identical cylinders intersect mutually orthogonally? See Figure 13 (right
panel). To learn how this intersection is easily created using either light beams or a cylindrical

knife, see [4]. Then the 3-D region of intersection has volume 8 (2 — 1/2)r® and surface area

24 (2 —v/2) r?, both free of 7. See [4] for justification and examples of many other intersections
of cylinders where 7 is absent from volume and surface area.

4.4 Center of gravity

The center of gravity (CG) of a semi-circular lamina of uniform thickness, unit radius and made
of material of uniform density is a point on the mid-radius line at a distance T from the midpoint

of the diameter, where
fﬂlx-Q\/l —xidr 4

fol 2V1 — 22 dx 37

involves 7, just as one would naturally anticipate. But did you expect a 77'? Note that the
integral in the denominator is the area m/2 of a semi-circle and that in the numerator is the
volume 2/3 of the smaller slice cut off from the cylinder with H = 1, that we discussed in
Subsection 4.2.

Figure 14: Center of gravity of a semi-circle and a hemi-sphere

Having shown the presence of 7=! in the CG of a semi-circle, we are puzzled when 7 vanishes
from the CG of a hemisphere of unit radius and is made of material of uniform density. This
CG is a point on the mid-radius line at a distance Z3 = 3/8 from the center of the circular base,
free of 7! How come? It is because

f01$F(1—$2)dSU B

fol (1 —22)dz

T3 =

Note that 7 got canceled from the numerator and the denominator. But did you anticipate the
CG would be free of 77 I had to train my brain.
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Are you sad to see m disappear from the CG of a hemisphere? Do not despair; carefully
work out the CG of a 4-D hemi-hypersphere, which is 7, = 16/(157). See, 7 has returned in
glory, albeit in its inverse incarnation. There is no stopping now: Check that Ts = 5/16, Tg =
32/(35m), Tr = 35/128. Making a change of variable x = sin # and using integration by parts,
you can show that for all m > 2,

2m +1 _ 2m+2 _

me«H = om + 2 L2m—1; and f2m+2 = om + 3 Tom-

Next, by mathematical induction, you can prove the alternate appearance and disappearance
of 771 in successive dimensions forever and ever! It reminds me of a magic show where a coin
alternatively appears and disappears on the magician’s palm.

4.5 Probability distributions

Suppose that Z has a standard normal distribution. Then the PDF of the folded standard
normal variable |Z| is e **/2\/2/m on (0,00); and the PDF of the squared standard normal
variable Z? (also known as a chi-square variable with one degree of freedom) is e=%/2//27 x
on (0,00). Whereas E[|Z]] = \/2/m involves 7 as anticipated, why is F[Z?] = 1, free of 77
Caution: E[Z?] is neither E?[Z] nor E?[|Z]].

Next, suppose that Z;, Z, are independent, standard normal variables. Then, as we saw in
Subsection 3.3, Z; /Z, has the standard Cauchy distribution with PDF 1/[r(1+2?%)] on (—00, c0),
where 7 is present in the PDF. On the other hand, W = Z? 4+ Z2 (a chi-square variable with
two degrees of freedom, or an exponential variable with mean 2) has PDF (1/2) e™*/2 on (0, 00),

and R = \/Z2 + Z2 has PDF re /2 on (0, 00). Where did 7 go? On vacation to Madagascar?
No, it has been absorbed into © = tan~!(Z;/Z5,), which is stochastically independent of W (and
hence of R) and has a uniform distribution on (0, 27).

The integral I = [ e " 2dx = /27 that we met in Subsection 3.3, helps us evaluate
the gamma function I'(p) = fooc rP~le % dx at positive half integers, because changing variable
r = u?/2, we evaluate

r (;) = [Carerae [T VB a- Ve (g) VI = V.

Next, using integration by parts, we see that

1 1 1
—) = S S — 1 > 1.
F(n+2> (n 2>F<n 2) for all n >

Thus, for any natural number n, we can see that I'(n+1/2) is a rational multiple of /7. However,
again by integration by parts, we can see that I'(n) = (n— 1)I'(n— 1), whence I'(n) = (n —1)! is
an integer. Isn’t it like a magic show where a bouquet alternately appears from and disappears
into the magician’s hat?

4.6 Acute triangles in high dimensions

We conclude this section with a mesmerizing truth, which I first came across in [27].
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In 1982, Glen Richard Hall (1954-) posed and solved the acuteness of a random triangle:
“Suppose that three points are selected independently and at random in an n-D ball (region
enclosed by the n-D hyper-sphere). What is the probability P, that the selected points form an
acute triangle?”

The values of P, illuminate the geometry of the n-D unit ball. Hall reported the exact formula
for dimensions 2 and 3. Using “cumbersome, but essentially standard methods,” Christian
Buchta in 1986 gave the answers in closed form for all higher dimensions. Table 1 reports the
formulas and values of P, for n < 9.

Table 1: Probability P, that three random points in an n-Ball form an acute triangle

P, | exact formula ~ value
P |47 % —1/8 0.280285
Py | 33/70 0.471429
Py | (256/45)m72 4+ 1/32 0.607655
Ps | 1415/2002 0.706793
Ps | (2048/315)7~2 + 31/256 0.779842
P, | 231161/277134 0.834113
Py | (4194304/606375)7 2 + 89/512 | 0.874668
Py | 9615369/10623470 0.905106

The probability of forming an acute triangle increases with dimension because three randomly
chosen points in the n-D ball, when n is large, are highly likely to be close to mutually orthogonal
unit vectors, implying that the triangle is almost an equilateral triangle of side length /2. But
why does 72 appear in the expressions for even dimensions, with a rational multiplier and a
rational addendum. Why does it vanish for odd dimensions, leaving only a rational number?
Moreover, why is the probability rational for odd dimensions, and why is there a rational additive
constant on top of a rational multiple of 7=2 for even dimensions?

To me, this result is like the grand finale in a magic show where a dove alternately appears
and disappears according as the magician claps hands twice or thrice. How does the magician
(and the dove) do it? T choose to remain silent for T am still awestruck. Inquisitive readers may
read the papers [15] and [7].

Postlude

We have encountered some selected appearances of 7 in diverse areas of mathematics and physics,
sometimes expected and other times unexpected, giving full or partial explanations and refer-
ences to justify its presence. We have also wondered aloud why 7 turned out to be a no-show
where we were anticipating its arrival — again with justifications and references.

Admittedly, the plot is too vast to be documented in just one mathematics paper. We
sincerely hope our selections will whet the readers’ appetite and inspire them to seek more ap-
pearances of 7 in both usual and strange places and wonder more about its unexpected absences
elsewhere.
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paper is an offering to Pastor Monica Miller, who, having provided spiritual nourishment, also
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